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Reprogramming of somatic cells to a pluripotent embryonic stem cell-like state has been achieved
by nuclear transplantation of a somatic nucleus into an enucleated egg and most recently by intro-
ducing defined transcription factors into somatic cells. Nuclear reprogramming is of great medical
interest, as it has the potential to generate a source of patient-specific cells. Here, we review strat-
egies to reprogram somatic cells to a pluripotent embryonic state and discuss our understanding of
the molecular mechanisms of reprogramming based on recent insights into the regulatory circuitry
of the pluripotent state.
Introduction
Stem cells—characterized by the ability to both self-renew and

to generate differentiated functional cell types—have been de-

rived from the embryo and from various sources of the postnatal

animal. It is customary to classify stem cells according to their

developmental potential (Table 1). In mammals only the zygote

and early blastomeres are totipotent and can generate the whole

organism including extraembryonic tissues. Mouse embryonic

stem (ES) cells are an example of pluripotent cells that can

self-renew and generate all cell types of the body in vivo and in

culture but are not able to generate the extraembryonic tropho-

blast lineage (see Essay by J. Rossant, page 527 of this issue).

Multipotent cells such as hematopoietic stem cells can give

rise to all cell types within one particular lineage (see Review

by S.H. Orkin and L.I. Zon, page 631 of this issue). Spermatogo-

nial stem cells are an example of unipotent stem cells, as they

can only form sperm (see Minireview by R.M. Cinalli et al.,

page 559 of this issue).

Nuclear transplantation (NT), also referred to as somatic cell

nuclear transfer (SCNT), denotes the introduction of a nucleus

from a donor somatic cell into an enucleated oocyte to generate

a cloned animal such as Dolly the sheep (Wilmut et al., 1997). The

generation of live animals by NT demonstrated that the epige-

netic state of somatic cells, including that of terminally differen-

tiated cells, while stable, is not irreversibly fixed but can be re-

programmed to an embryonic state that is capable of directing

development of a new organism. In addition to providing an ex-

citing experimental approach for elucidating the basic epigenetic

mechanisms involved in embryonic development and disease,

nuclear cloning technology is of potential interest for patient-

specific transplantation medicine. However, any medical appli-

cation is hampered by the inefficiency of the cloning process,

the lack of knowledge of the underlying mechanisms, and ethical

concerns. One of the key issues raised by nuclear cloning relates

to the mechanism of reprogramming, i.e., how to define the

‘‘reprogramming factors’’ in the egg cytoplasm that convert the

epigenome of a somatic cell into that of an embryonic cell.
This article focuses on two main topics. We will discuss strat-

egies to reprogram somatic cells to a pluripotent embryonic

state, and we will review recent advances in defining the molec-

ular circuitry that maintains a pluripotent state while allowing for

differentiation into more specialized states in response to partic-

ular signaling cues. We will restrict our review to mammalian sys-

tems and refer the reader to a number of recent reviews on stem

cells and nuclear reprogramming in other systems such as am-

phibians and invertebrates (Gurdon and Byrne, 2003; Sánchez

Alvarado, 2006; also see Review by K.D.Birnbaum and Sánchez

Alvarado, page 697 of this issue).

Strategies of Reprogramming Somatic Cells
Several different strategies such as nuclear transplantation, cel-

lular fusion, and culture induced reprogramming have been

employed to induce the conversion of differentiated cells into

an embryonic state (Figure 1). These experimental approaches

have been extensively reviewed (Hochedlinger and Jaenisch,

2006; Yamanaka, 2007) and will only be briefly summarized

here. Instead, our main focus will be on the most recently estab-

lished strategy that uses transduction of defined factors into

somatic cells to induce reprogramming. In normal development,

cells transit in a unidirectional process from the totipotent zygote

to pluripotent inner cell mass (ICM) and epiblast cells and to more

restricted and eventually differentiated cells. These transitions

occur in the context of the embryo as a result of cell-cell interac-

tions and are characterized by distinct epigenetic modifications

(Gan et al., 2007; Surani et al., 2007). It is important to realize,

however, that cells growing in tissue culture, in contrast to cells

in the embryo, are exposed to different selective conditions,

and this will result in cell states that are unlike those seen

in vivo. For example, although embryonic stem (ES) cells or

embryonic germ (EG) cells are derived from the ICM or from

primordial germ cells, respectively, their growth and molecular

characteristics are the product of tissue culture selection for rapid

in vitro proliferation, and this invariably will result in cells that are
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epigenetically and biologically different from their corresponding

cells of origin.

In this review we will focus on cells grown in vitro, and it is im-

portant to emphasize that cells adapted to proliferate in tissue

culture represent only a proxy for the in vivo situation and may

at best approximate the properties of cells in the embryo (Gan

et al., 2007; Surani et al., 2007). Consequently, concepts such

as pluripotency, multipotency, or differentiation of cultured cells

rely on operational criteria and are typically assessed by different

functional and molecular standards. The least stringent func-

tional assay for the developmental potential of a cultured cell is

in vitro differentiation followed, with increasing stringency, by

the generation of teratomas (germ cell tumors), chimera forma-

tion, and germ line contribution (Table 2). The most rigorous

test for developmental potency is the injection of cells into 4n

host blastocysts (Eggan et al., 2001; Nágy et al., 1990), which re-

sults in animals composed only of the injected donor cells (‘‘all

ES’’ embryos or animals) rather than a chimeric composite of

injected and host-derived cells.

Nuclear Transplantation

Nuclear cloning provided proof for the notion that irreversible al-

terations of the genome are not required for normal develop-

ment. However, because no genetic marker was available in

the initial cloning experiments, it remained an open question

whether terminally differentiated cells could be reprogrammed

to a totipotent state. The successful generation of cloned mice

from genetically marked lymphoid cells (Hochedlinger and Jae-

nisch, 2002; Inoue et al., 2005) or from postmitotic neurons (Eg-

gan et al., 2004; Li et al., 2004) unambiguously demonstrated

that terminal differentiation does not restrict the potential of the

nucleus to support development. Cloning from terminally differ-

Table 1. Definition of Some Terms

Potency

Sum of developmental options

accessible to cell

Totipotent Ability to form all lineages of

organism; in mammals only the

zygote and the first cleavage

blastomeres are totipotent

Pluripotent Ability to form all lineages

of body. Example: embryonic

stem cells

Multipotent Ability of adult stem cells

to form multiple cell types

of one lineage. Example:

hematopoietic stem cells

Unipotent Cells form one cell type.

Example: spermatogonial stem

cells (can only generate sperm)

Reprogramming Increase in potency, dedifferentiation.

Can be induced by nuclear transfer,

cell fusion, genetic manipulation

Transdifferentiation,

plasticity

Notion that somatic stem cells

have broadened potency and can

generate cells of other lineages,

a concept that is controversial

in mammals
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entiated donor cells is, however, inefficient and was in many

instances successful only when a ‘‘two-step’’ procedure, which

involved the generation of cloned ES cells as an intermediate,

was used. These observations suggested that the differentiation

state of the donor cell affects the efficiency of producing cloned

animals, with less differentiated cells being more amenable to

epigenetic reprogramming. For example, the generation of

cloned ES cells from neurons was less efficient than that from

neural stem cells (Blelloch et al., 2006; Inoue et al., 2007). Also,

direct cloning of mice from skin stem cells was more efficient

than cloning from transiently amplifying keratinoyctes (which

are derived from skin stem cells but cannot self-renew and are

already on the path to differentiation) (Li et al., 2007). However,

because the cloning process is affected by many other parame-

ters, such as cell cycle and the physical characteristics of the do-

nor nucleus, it has remained unresolved whether cloning effi-

ciency decreases with progressive cell differentiation in all

cases (for discussion of this issue, see Hochedlinger and Jae-

nisch [2006] and Oback and Wells [2007]). For example, it has

been argued that nuclei from granulocytes are more efficient do-

nors than nuclei from hematopoietic stem cells (Sung et al.,

2006), but the validity of these claims has been challenged

(Hochedlinger and Jaenisch, 2007).

Nuclear cloning is an inherently inefficient process due to

faulty reprogramming, which results in the death of most clones

soon after implantation or birth of clones with serious abnormal-

ities (Hochedlinger and Jaenisch, 2003; Yang et al., 2007). It

therefore became important to determine whether faulty reprog-

ramming would affect the therapeutic utility of patient-specific or

‘‘customized’’ ES cells derived by NT. Subsequent experiments

showed no molecular or biological differences when ES cells de-

rived from fertilized embryos or by NT were compared (Bram-

brink et al., 2006; Wakayama et al., 2006), indicating that NT

ES cells are as useful for therapeutic application as ES cells

derived from fertilized embryos.

Based upon earlier results with mice, it was postulated that

cloning of mammals could be accomplished only when oocytes

rather than fertilized eggs were used as nuclear recipients

(McGrath and Solter, 1984). Given the difficulty of obtaining un-

fertilized human oocytes, this result posed a significant impedi-

ment to the potential of nuclear transplantation approaches

for therapeutic application. It is of considerable interest, there-

fore, that cloned ES cells and mice can be generated from so-

matic donor nuclei transplanted into enucleated zygote recipi-

ents if drug-induced synchronization of donor cells and zygote

is employed (Egli et al., 2007; Greda et al., 2006). Because fer-

tilized human embryos are easier to obtain than unfertilized hu-

man eggs, the adaptation of this strategy to the human system

would solve major practical problems that hamper the eventual

application of nuclear transplantation for medicine.

Fusion of Somatic Cells and Embryonic Stem Cells

Epigenetic reprogramming of somatic nuclei to an undifferenti-

ated state has been demonstrated in murine hybrids produced

by fusion of embryonic cells with somatic cells. Hybrids between

various somatic cells and embryonic carcinoma cells (Solter,

2006), embryonic germ (EG), or ES cells (Zwaka and Thomson,

2005) share many features with the parental embryonic cells, in-

dicating that the pluripotent phenotype is dominant in such



fusion products. As with mouse (Tada et al., 2001), human ES

cells have the potential to reprogram somatic nuclei after fusion

(Cowan et al., 2005; Yu et al., 2006). Activation of silent pluripo-

tency markers such as Oct4 or reactivation of the inactive so-

matic X chromosome provided molecular evidence for reprog-

ramming of the somatic genome in the hybrid cells. It has been

suggested that DNA replication is essential for the activation of

pluripotency markers, which is first observed 2 days after fusion

(Do and Scholer, 2004), and that forced overexpression of Nanog

in ES cells promotes pluripotency when fused with neural stem

cells (Silva et al., 2006). However, the inefficiency of the fusion

process has impeded the study of molecular mechanisms

involved in somatic reprogramming.

While the fusion method does not rely on nuclear transfer to

generate pluripotent cells, tetraploidy of the reprogrammed cells

presents a major shortcoming for using this approach for cus-

tomized cell therapy. Although selective elimination of some ES

cell-derived chromosomes is possible (Matsumura et al., 2007),

it may be difficult to generate diploid reprogrammed cells in this

way due to the risk of generating large-scale genomic instability.

In another approach, short-term incubation of permeabilized

somatic cells with extracts of ES cells was claimed to result in ge-

nome-wide reprogramming (Taranger et al., 2005), but convinc-

ing evidence for reprogramming of the somatic cell genome is still

lacking.

Culture-Induced Reprogramming

Pluripotent cells have been derived from embryonic sources such

as blastomeres and the inner cell mass (ICM) of the blastocyst (ES

cells), the epiblast (EpiSC cells), primordial germ cells (EG cells),

and postnatal spermatogonial stem cells (‘‘maGSCs,’’ ‘‘ES-like’’

cells) (Table 3) (see Essays by J. Rossant, page 527 and J. Silva

and A. Smith, page 532 of this issue). Donor cells from the germ

Figure 1. Four Strategies to Induce Repro-

gramming of Somatic Cells

(1) Nuclear transfer involves the injection of a

somatic nucleus into an enucleated oocyte, which,

upon transfer into a surrogate mother, can give

rise to a clone (‘‘reproductive cloning’’), or, upon

explanation in culture, can give rise to genetically

matched embryonic stem (ES) cells (‘‘somatic

cell nuclear transfer,’’ SCNT). (2) Cell fusion of

somatic cells with ES cells results in the generation

of hybrids that show all features of pluripotent ES

cells. (3) Explantation of somatic cells in culture

selects for immortal cell lines that may be pluripo-

tent or multipotent. At present, spermatogonial

stem cells are the only source of pluripotent cells

that can be derived from postnatal animals. (4)

Transduction of somatic cells with defined factors

can initiate reprogramming to a pluripotent state.

cell lineage such as PGCs or spermatogo-

nial stem cells are known to be unipotent

in vivo, but it has been shown that plurip-

otent ES-like cells (Kanatsu-Shinohara

et al., 2004), or maGSCs (Guan et al.,

2006), can be isolated after prolonged in

vitro culture. While most of these pluripo-

tent cell types were capable of in vitro differentiation and tera-

toma formation, only ES, EG, EC, and spermatogonial stem

cell-derived maGCSs or ES-like cells were pluripotent by more

stringent criteria (compare Table 2), as they were able to form

postnatal chimeras and contribute to the germline. Recently,

multipotent adult spermatogonial stem cells (MASCs) were de-

rived from testicular spermatogonial stem cells of adult mice,

and these cells had an expression profile different from that of

ES cells (Seandel et al., 2007) but similar to EpiSC cells, which

were derived from the epiblast of postimplantation mouse em-

bryos (Brons et al., 2007; Tesar et al., 2007). While both MASCs

and EpiSCs were able to differentiate in vitro and to generate ter-

atomas in vivo, they were unable to form chimeras in contrast to

ES, EG, EC, and maGSCs cells. MASCs and EpiSCs were similar

to human ES cells in many ways: they required FGF but not LIF for

growth, they were able to express trophoblast markers in vitro,

and they displayed expression profiles that were more typical

of human than mouse ES cells (see Essay by J. Rossant). These

similarities raise the possibility that the embryonic origin of hu-

man ES cells may be the epiblast stage in contrast to that of

mouse ES cells, which are derived from the ICM. It may be that

the present isolation protocols of human ES cells using FGF

and activin selects against ‘‘true’’ ES cells and results in cells

that resemble mouse EpiSCs rather than mouse ES cells

(Lovell-Badge, 2007). It is possible that the existing human ES

cells, the murine EpiSCs and MASCs are multipotent cell types

that are endowed with a more restricted developmental potential

than pluripotent mouse ES cells.

It remains an open question whether somatic stem cells derived

from the postnatal animal are pluripotent and whether truly plurip-

otent cells can be isolated from somatic tissues by expansion

in culture (as can been done with unipotential PGCs or
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Table 2. Commonly Used Functional Criteria to Assess the Developmental Potential of Cells

Assay Experimental approach Limitations

In vitro differentiation Differentiation induced in cultured cells and

cells are assayed for the expression of cell-

type specific markers

The expression for differentiation markers is

no test for functionality; marker expression

can be due to

cellular stress response

Teratoma formation Induction of tumors demonstrating

the potential to generate differentiated cell

types of various lineages

Does not test for the ability of cells

to promote normal development

Chimera formation Contribution of cells to normal development

following injection

into host blastocyst

Host-derived cells in chimera may

complement cell nonautonomous defects

Germline contribution Ability of test cells to generate

functional germ cells

Excludes genetic but not epigenetic defects

that could interfere with promoting

development

Tetraploid complementation Injection of test cells into 4n host blastocyst.

Because 4n host cells cannot contribute to

somatic lineages embryo is exclusively

composed of test cells

Most stringent test for pluripotency;

does not test for the ability to form

trophectoderm (placental) lineage
spermatogonial stem cells). At issue is whether somatic stem cells

of tissues such as the hematopoietic system, the intestine or the

skin that are multipotent and can generate all cell types in their re-

spective lineages in vivo are inherently plastic and capable of

‘‘transdifferentiation’’ into cell types of other lineages (see Table

1 for definitions of terms). Claims for cellular ‘‘plasticity’’ rest on

two criteria: (1) in vitro differentiation to different cell types and

(2) transplantation of the cells into blastocysts or postnatal mice

to assess their ability to contribute in vivo to different tissues.

As summarized in Table 3, in vitro differentiation, often used as

the only criterion for transdifferentiation, is the least stringent
measure for pluripotency (compare Table 2). The expression of

a limited set of differentiation markers as assayed in most studies

is often insufficient for concluding that a cell has been converted

to a new state of differentiation and cellular function. A case in

point is the activation of commonly used neural differentiation

markers such as nestin, NeuroD1, and beta-III-tubulin in bone

marrow or skin-derived cells, which can reflect a cellular stress

response rather than indicating differentiation into the neural lin-

eage (Croft and Przyborski, 2006; Neuhuber et al., 2004). Thus,

the ability of aberrant responses of lineage-restricted cells to

inappropriate physiological signals may be due to ‘‘cellular
Table 3. Generation of Pluripotent Cells from Various Sources and the Different Criteria Used for Assessing Developmental Potential

Donor cell/tissue Pluripotent cells

Criteria for pluripotency

ref

In vitro

differentiation Teratoma

Postnatal

chimera Germline

4n

complementation

Murine oocyte Parthogenetic ES cells Yes Yes Yes Yes No 1

Blastomere ES 2

ICM Yes 3

PGC EG, EC No 4

Spermatogonial stem cells GMCS, maSSC, MASC 5

Epiblast EpiSC No No 6

Human oocyte Parthogenetic ES cells 7

Human blastocyst Hu ES cells 8

Bone marrow-derived cells MAPC No ? 9

Cord blood cells No 10

Neural cells Neurosphere derived 11

All cells listed were able to differentiate in vitro, which represents the least stringent criterion for developmental potential. Only murine oocyte, blas-

tocyst, and spermatogonial stem cell derived cells were able to generate chimeras and contribute to the germline.

References: 1 (Narasimha et al., 1997); 2 (Wakayama et al., 2007); 3 (Eggan et al., 2001; Evans and Kaufman, 1981; Martin, 1981); 4 (Matsui et al., 1992;

Resnick et al., 1992); 5 (Guan et al., 2006; Kanatsu-Shinohara et al., 2004; Seandel et al., 2007); 6 (Brons et al., 2007; Tesar et al., 2007); 7 (Cibelli et al.,

2002; Revazova et al., 2007); 8 (Thomson et al., 1998); 9 (Jiang et al., 2002; Phinney and Prockop, 2007); 10 (van de Ven et al., 2007); 11 (Clarke et al.,

2000).
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mimicry’’ (Rizzino, 2007) and may not reflect transdifferentiation

to another lineage.

Claims for in vivo transdifferentiation of cells derived from

bone marrow, brain, or skin to cells of different lineages have re-

mained controversial because of flaws in experimental design or

interpretation (Joseph and Morrison, 2005; Wagers and Weiss-

man, 2004). For example, the presence of genetically marked

cells in nonhematopoietic tissues such as heart, muscle, or brain

recipients after transplantation of marked bone marrow cells

may be due to the circulation and homing of the transplanted

cells to the respective tissues (Balsam et al., 2004; Murry et al.,

2004) rather than to transdifferentiation of the cells. Alternatively,

autofluorescence may explain the detection of GFP marker ex-

pression rather than the incorporation of donor cells into tissues

of transplanted mice (Jackson et al., 2004). In addition, fusion

between donor and recipient cells may account for the expres-

sion of the donor marker in cells of the host (Alvarez-Dolado

et al., 2003; Terada et al., 2002; Wang et al., 2003; Ying et al.,

2002). For example, the detection of amniotic stem cell-derived

cells in the brains of adult mice that were injected as newborns

(De Coppi et al., 2007) is not a sufficiently strong criterion for

transdifferentiation in the absence of stringent characterization

of cell-specific marker expression and functional integration of

the donor-derived cells into the host tissue. While it is possible

that prolonged in vitro culture induces transdifferentiation and

pluripotency, this has not been clearly proven. For instance, al-

though bone marrow-derived MAPCs (multipotential adult pro-

genitor cells) were able to express various differentiation-spe-

cific markers upon in vitro differentiation, they were unable to

generate teratomas (Jiang et al., 2002). Injection of cells into

blastocysts has been used as a more stringent assay for pluripo-

tency. Though the generation of a single high-contribution post-

natal chimera from MAPCs was reported (Jiang et al., 2002), this

result has not been independently confirmed to date. Also, the

mere detection of marked cells in midgestation embryos (Clarke

et al., 2000) provides insufficient evidence to conclude that the

donor cells ‘‘contributed to development.’’ The demonstration

of functional integration of donor cells into viable late-stage

Figure 2. Reprogramming of Somatic Cells

to a Pluripotent State

(A) Transduction of the four transcription factors

Oct4, Sox2, c-myc, and Klf4 into fibroblasts initi-

ates the conversion to partially reprogrammed

cells that express Fbx15 or to fully reprogrammed

iPS cells that express Oct4 or Nanog. The process

involves a sequence of stochastic epigenetic

events.

(B) Selection schemes. Cells carrying a drug resis-

tance marker in the Fbx15, the Oct4, or the Nanog

gene are transduced with the four factors and

selected for drug resistance.

embryos or postnatal chimeras is needed

to make this conclusion. Finally, the eval-

uation of plasticity and transdifferentia-

tion is further complicated by the obser-

vation that soluble factors secreted by

mesenchymal stem cells can alter the tis-

sue microenvironment after transplantation (for recent review of

this controversial field, see Phinney and Prockop [2007]).

In summary, pluripotency and transdifferentiation of somatic

cells remains an unproven concept. While unexpected transfor-

mation events may occur in somatic lineages, such events are

exceedingly rare, are not a major force in physiological repair,

and may simply be due to events such as cell fusion.

Reprogramming by Defined Transcription Factors

Takahashi and Yamanaka recently achieved a significant break-

through in reprogramming somatic cells back to an ES-like state

(Takahashi and Yamanaka, 2006). They successfully reprog-

rammed mouse embryonic fibroblasts (MEFs) and adult fibro-

blasts to pluripotent ES-like cells after viral-mediated transduc-

tion of the four transcription factors Oct4, Sox2, c-myc, and

Klf4 followed by selection for activation of the Oct4 target gene

Fbx15 (Figure 2A). Cells that had activated Fbx15 were coined

iPS (induced pluripotent stem) cells and were shown to be plurip-

otent by their ability to form teratomas, although they were unable

to generate live chimeras. This pluripotent state was dependent

on the continuous viral expression of the transduced Oct4 and

Sox2 genes, whereas the endogenous Oct4 and Nanog genes

were either not expressed or were expressed at a lower level

than in ES cells, and their respective promoters were found to

be largely methylated. This is consistent with the conclusion

that the Fbx15-iPS cells did not correspond to ES cells but may

have represented an incomplete state of reprogramming. While

genetic experiments had established that Oct4 and Sox2 are

essential for pluripotency (Chambers and Smith, 2004; Ivanova

et al., 2006; Masui et al., 2007), the role of the two oncogenes

c-myc and Klf4 in reprogramming is less clear. Some of these on-

cogenes may, in fact, be dispensable for reprogramming, as both

mouse and human iPS cells have been obtained in the absence of

c-myc transduction, although with low efficiency (Nakagawa

et al., 2008; Wernig et al., 2008; Yu et al., 2007).

When activation of the endogenous Oct4 or Nanog genes was

used as a more stringent selection criterion for pluripotency (Fig-

ure 2B), the resulting Oct4-iPS or Nanog-iPS cells, in contrast to

Fbx15-iPS cells, were fully reprogrammed to a pluripotent, ES
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cell state by molecular and biological criteria (Maherali et al.,

2007; Okita et al., 2007; Wernig et al., 2007). (1) Global gene ex-

pression and the chromatin configuration of Oct4 or Nanog-

selected iPS cells were indistinguishable from those of ES cells.

(2) In contrast to Fbx15-iPS cells, the pluripotent state in Oct4

or Nanog-iPS cells depended on the activity of the fully repro-

grammed and hypomethylated endogenous Oct4 and Nanog pro-

moters and not on the virally transduced factors. This is because

the Moloney virus vectors, while highly expressed in the infected

fibroblasts, were inactive in Oct4- and Nanog-iPS cells, consis-

tent with the well-established evidence that Moloney viruses

are strong targets for silencing in embryonic cells (Jähner et al.,

1982; Okano et al., 1999) due to activation of the de novo meth-

yltransferases Dnmt3a and Dnmt3b during the reprogramming

process. (3) Similar to somatic cell-ES cell fusion hybrid cell-

mediated reprogramming, the inactive X chromosome of the so-

matic donor cells was reactivated in iPS cells (Maherali et al.,

2007). (4) Importantly, Oct4 and Nanog iPS cells generated post-

natal chimeras, contributed to the germ line (Maherali et al., 2007;

Okita et al., 2007; Wernig et al., 2007), and generated late gesta-

tion embryos through tetraploid complementation (Wernig et al.,

2007), the most stringent test for developmental potency (Table

2). Thus, all molecular and biological evidence indicated that

Oct4 and Nanog iPS cells were indistinguishable from, if not iden-

tical to, ES cells. (5) Pluripotency markers such as alkaline phos-

phatase (AP), SSEA1, and Oct4 or Nanog appear sequentially

during the reprogramming process (Figure 3A); (Brambrink

et al., 2008; Wernig et al., 2007; Stadtfeld et al., 2008). (6) Finally,

evidence obtained by using inducible lentivirus-based vectors

indicated that the four factors must be expressed in the infected

MEFs for more than 12 days in order to generate iPS cells (Bram-

brink et al., 2008) (Figure 3A).

Expression of the reprogramming factors in fibroblasts

appears to initiate a sequence of stochastic events that eventu-

ally leads to a small fraction of iPS cells. This is supported by

clonal analyses demonstrating that the activation of pluripotency

markers can occur at different times after infection in individual

mitotic daughter cells of the same infected fibroblast (Meissner

et al., 2007). Thus, ectopic expression of Oct4, Sox2, c-myc,

and Klf4 may trigger a sequence of epigenetic events such as

chromatin modifications or changes in DNA methylation that

eventually result in the pluripotent state of some infected cells

but not others even though they carry the identical combination

of proviruses (Figure 3B). These experiments also suggested

that the frequency of reprogramming increased with time, result-

ing in up to 0.5% of the input MEFs giving rise to iPS cells at 3 to 4

weeks after infection (Meissner et al., 2007). An unresolved issue

is whether the partially reprogrammed iPS cells selected for the

activation of Fbx15 (Takahashi and Yamanaka, 2006) corre-

spond to stable intermediates in the reprogramming process to

fully reprogrammed iPS cells (Figure 2A) or whether they repre-

sent a genetically homogeneous population of cells that are at

different stages of stochastic reprogramming (Figure 3B).

The original isolation of iPS cells was based upon retrovirus-

mediated transduction of oncogenes and on drug-dependent

selection for Fbx15, Oct4, or Nanog activation. These two exper-

imental requirements seriously hinder the eventual application of

the in vitro reprogramming approach for therapeutic use in hu-

mans because mice derived from iPS cells frequently developed

cancer (Okita et al., 2007) and because the isolation of human

iPS cells cannot be based on genetically modified donor cells.

Some of these limitations have been overcome in recent exper-

iments. First, in an effort to reduce the risk of tumors in iPS cell-

derived chimeras, more recent experiments showed that c-myc

is dispensable for reprogramming (Nakagawa et al., 2008; Wer-

nig et al., 2008; Yu et al., 2007), though the reprogramming pro-

cess was significantly delayed and less efficient in the absence

of this oncogene. While mice derived from these iPS cells will

not develop c-myc-induced tumors (Nakagawa et al., 2008; Wer-

nig et al., 2008), it is not clear whether the transduction of other

Figure 3. Reprogramming Involves Sequen-

tial Activation of Pluripotency Markers and

Stochastic Epigenetic Events

(A) Kinetics of pluripotency-marker appearance.

Alkaline phosphatase (AP) and SSEA1 positive

cells are already detected 3 and 9 days, respec-

tively, after factor transduction, whereas GFP ex-

pressed from the endogenous Oct4 or Nanog

loci first appear only after 2 weeks. The virally

transduced factors need to be expressed for

about 2 weeks to initiate the reprogramming pro-

cess (Brambrink et al., 2008).

(B) Oct4-GFP or Nanog-GFP fibroblasts were

transduced with the four factors. Colonies display-

ing a transformed phenotype were GFP negative

and were cloned a few days after infection. Further

cloning yielded subclones that activated GFP at

different times (Meissner et al., 2007). Because

the subclones were derived from the same in-

fected cell, stochastic epigenetic events must be

important for reprogramming.
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retrovirus-transduced transcription factors such as Oct4 (Ho-

chedlinger et al., 2005) will cause tumors at later stages. Second,

fully reprogrammed, genetically unmodified mouse fibroblasts

were isolated based only on morphological criteria, as reprog-

ramming occurred frequently enough to be detectable in culture

(Blelloch et al., 2007; Meissner et al., 2007). Subsequent to these

studies, human iPS cells were isolated from genetically unmod-

ified fibroblasts (Takahashi et al., 2007; Yu et al., 2007; Park

et al., 2008), indicating that combinations of factors similar to

those used for reprogramming of mouse cells was also effective

for human cells.

Which of the original factors are essential for the reprogram-

ming process? It appears that c-myc significantly enhances

and accelerates the process but is dispensable. Also, human

iPS cells have been obtained by exposing fibroblasts only to

Oct4, Sox2, and lin28 (Yu et al., 2007), an RNA-binding protein,

suggesting that alternative combinations of factors may initiate

reprogramming. It is possible that Oct4, which in normal devel-

opment is already expressed in the oocyte and may be the

most upstream gene in the molecular circuitry of pluripotency

(see later), is the only obligatory factor to initiate reprogramming

and that other factors serve to accelerate the process and to

increase efficiency.

One of the promises of patient-specific ES cells is the potential

for customized therapy of diseases (see Essay by S.M. Wu et al.,

page 537 and Review by C.E. Murry and G. Keller, page 661 of

this issue). Previous studies have shown that disease-specific

ES cells produced by nuclear cloning in combination with gene

correction can be used to correct an immunological disorder in

a proof-of-principle experiment in mice (Rideout et al., 2002).

In a similar approach, we recently demonstrated that iPS cells

derived from skin cells of a mouse with sickle cell anemia were

able to fully restore normal blood function when transplanted

into diseased mice (Hanna et al., 2007).

Molecular Circuitry of Pluripotency
The gene-expression program of pluripotent ES cells is a product

of regulation by specific transcription factors, chromatin-modify-

ing enzymes, regulatory RNA molecules, and signal-transduction

pathways (Figure 4). Recent studies have provided new insights

into how the key ES cell regulators work together to produce

the pluripotent state.

ES Cell Transcription Factors

Genetic studies first showed that the homeodomain transcription

factors Oct4 and Nanog are essential regulators of early develop-

ment and ES cell identity (Chambers et al., 2003; Chambers and

Smith, 2004; Mitsui et al., 2003; Nichols et al., 1998). These tran-

scription factors are expressed both in pluripotent ES cells and in

the inner cell mass (ICM) of the blastocyst from which ES cells are

derived. Disruption of Oct4 and Nanog causes loss of pluripo-

tency and inappropriate differentiation of ICM and ES cells to

trophectoderm and extraembryonic endoderm, respectively

(Chambers et al., 2003; Nichols et al., 1998; Ying et al., 2002).

However, recent evidence suggests that Nanog may function to

stabilize the pluripotent state rather than being essential for main-

taining pluripotency of ES cells (Chambers et al., 2007) (see Essay

by J. Silva and A. Smith). Oct4 can heterodimerize with the HMG-

box transcription factor Sox2 in ES cells and Sox2 contributes to

pluripotency, at least in part, by regulating Oct4 levels (Masui

et al., 2007). Oct4 is rapidly and apparently completely silenced

during early cellular differentiation. The key roles played by

Oct4, Sox2, and Nanog during early development, and their

unique expression pattern (Chambers et al., 2003; Hart et al.,

2004; Nichols et al., 1998) make it likely that these regulators

are central to the transcriptional regulatory hierarchy that spec-

ifies embryonic stem cell identity.

Identification of the genes occupied by Oct4, Sox2, and

Nanog through genome-wide location analysis has provided in-

sights into the molecular mechanisms by which these transcrip-

tion factors contribute to pluripotency in human and murine ES

cells (Boyer et al., 2005; Loh et al., 2006). These experiments

yielded three key findings (Figure 5): (1) Oct4, Sox2, and Nanog

bind together at their own promoters to form an interconnected

autoregulatory loop, (2) the three factors often co-occupy their

target genes, and (3) Oct4, Sox2, and Nanog collectively target

two sets of genes, one that is actively expressed and another

that is silent in ES cells but remains poised for subsequent ex-

pression during cellular differentiation (Boyer et al., 2005). These

observations, described in more detail below, revealed key fea-

tures of the genetic logic of pluripotency and provided clues as to

how multiple transcription regulators can coordinately control

cell identity.

Autoregulatory Circuitry

Oct4, Sox2, and Nanog all bind to their own promoters, as well as

the promoters of the genes encoding the two other factors (Fig-

ure 5) (Boyer et al., 2005). This autoregulatory circuitry suggests

that the three factors function collaboratively to maintain their

own expression. Autoregulation is thought to enhance the

Figure 4. Pluripotency and the Transcriptional Regulatory Circuitry

Cartoon showing hypothetic connections between signal transduction path-

ways, transcription factors (blue balls), chromatin regulators (green balls),

and their target genes (orange squares) to form an image of transcriptional

regulatory circuitry. Some target genes produce miRNAs, which function at

posttranscriptional levels.
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stability of gene expression (Alon, 2007), which may facilitate

maintenance of the pluripotent state. Autoregulatory loops ap-

pear to be a general feature of master regulators of cell state

(Odom et al., 2006). Functional studies have confirmed that

Oct4 and Sox2 co-occupy and activate the Oct4 and Nanog

genes (Kuroda et al., 2005; Okumura-Nakanishi et al., 2005),

and experiments with an inducible Sox2 null murine ES-cell

line have provided compelling evidence for the existence of

this interconnected autoregulatory loop and its role in the main-

tenance of pluripotency (Masui et al., 2007).

The interconnected autoregulatory loop formed by Oct4,

Sox2, and Nanog also suggests how the core regulatory circuitry

of iPS cells might be jump-started when Oct4, Sox2, and other

transcription factors are overexpressed in fibroblasts (Maherali

et al., 2007; Okita et al., 2007; Takahashi and Yamanaka, 2006;

Wernig et al., 2007). When these factors are exogenously over-

expressed, they may contribute directly to the activation of

endogenous Oct4, Sox2, and Nanog, the products of which in

turn contribute to the maintenance of their own gene expression.

Co-Occupancy and Coordinate Activity

of Pluripotency Factors

Oct4, Sox2, and Nanog co-occupy several hundred genes, often

at apparently overlapping genomic sites (Boyer et al., 2005; Loh

et al., 2006). This suggests that these pluripotency factors gener-

ally do not control their target genes independently, but rather act

coordinately to maintain the transcriptional program required for

pluripotency. A large multiprotein complex containing Oct4 and

Nanog can be obtained by iterative immunoprecipitation in ES

cells, providing further evidence that multiple interacting proteins

likely coordinately control pluripotency (Wang et al., 2006). The

possibility that multiple pluripotency factors function in a complex

to coordinately control their target genes may help explain why

efficient iPS cell generation appears to require the combinatorial

overexpression of multiple transcription factors. Not all compo-

nents of this putative complex are required to initiate the process

of reprogramming, however, because exogenous Nanog is not

necessary for iPS generation. It seems likely that exogenous

Oct4 and other factors induce expression of endogenous Nanog

to levels sufficient to accomplish full reprogramming.

Regulation of Developmental Regulators

The master regulators of pluripotency occupy the promoters of

active genes encoding transcription factors, signal transduction

components, and chromatin-modifying enzymes that promote

ES cell self-renewal (Figure 5) (Boyer et al., 2005; Loh et al.,

2006). However, these transcriptionally active genes account

for only about half of the targets of Oct4, Sox2, and Nanog in

ES cells. These master regulators also co-occupy the promoters

of a large set of developmental transcription factors that are si-

lent in ES cells, but whose expression is associated with lineage

commitment and cellular differentiation (Boyer et al., 2005; Loh

et al., 2006). Silencing of these developmental regulators is al-

most certainly a key feature of pluripotency, because expression

of these developmental factors is associated with commitment

to particular lineages. MyoD, for example, is a transcription fac-

tor capable of inducing a muscle gene expression program in

a variety of cells (Davis et al., 1987). Therefore Oct4, Sox2, and

Nanog likely help maintain the undifferentiated state of ES cells

by contributing to repression of lineage specification factors.

Most of the transcriptionally silent developmental regulators

targeted by Oct4, Sox2, and Nanog are also occupied by the Pol-

ycomb group (PcG) proteins (Bernstein et al., 2006; Boyer et al.,

2006; Lee et al., 2006), which are epigenetic regulators that facil-

itate maintenance of cell state through gene silencing. The PcG

proteins form multiple polycomb repressive complexes (PRCs),

the components of which are conserved from Drosophila to hu-

mans (Schuettengruber et al., 2007). PRC2 catalyzes histone

H3 lysine-27 (H3K27) methylation, an enzymatic activity required

for PRC2-mediated epigenetic gene silencing. H3K27 methyla-

tion is thought to provide a binding surface for PRC1, which facil-

itates oligomerization, condensation of chromatin structure, and

inhibition of chromatin remodeling activity in order to maintain

Figure 5. Model of Core ES Cell Regulatory Circuitry

The Oct4, Sox2, and Nanog transcription factors (blue) occupy actively tran-

scribed genes, including transcription factors and signaling components nec-

essary to maintain the ES cell state. The three regulators also occupy silent

genes encoding transcription factors that, if expressed, would promote other

more differentiated cell states. At this latter set of genes, RNA polymerase II

(POL2) initiates transcription but does not produce complete transcripts due

to the repressive action of PcG proteins. The PcG proteins prevent RNA poly-

merase from transitioning into a fully modified transcription elongation appara-

tus (represented by phosphorylated ‘‘stars’’ on the tail of the POL2 enzyme).

The interconnected autoregulatory loop, where Oct4, Nanog, and Sox2 bind

together at each of their own promoters, is shown (bottom left).
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silencing. PRC1 also contains a histone ubiquitin ligase, Ring1b,

whose activity appears likely to contribute to silencing in ES cells

(Stock et al., 2007). How the PcG proteins are recruited to genes

encoding developmental regulators in ES cells is not yet under-

stood. Some of the most conserved vertebrate sequences are

associated with genes encoding developmental regulators, and

some of these may be sites for DNA-binding proteins that recruit

PcG proteins.

Recent studies revealed that the silent developmental genes

that areoccupied by Oct4, Sox2, and Nanog and PcG proteins ex-

perience an unusual form of transcriptional regulation (Guenther

et al., 2007). These genes undergo transcription initiation but

not productive transcript elongation in ES cells (Figure 5). The

transcription initiation apparatus is recruited to the promoters of

genes encoding developmental regulators, where histone modifi-

cations associated with transcription initiation and the initial step

of elongation (suchas H3K4methylation) are found,but RNApoly-

merase is incapable of fully transcribing these genes, presumably

because of repression mediated by the PcG proteins. These ob-

servations explain why the silent genes encoding developmental

regulators are generally organized in ‘‘bivalent’’ domains that are

occupied by nucleosomes with histone H3K4me3, which is asso-

ciated with gene activity, and by nucleosomes with histone

H3K27me3, which is associated with repression (Azuara et al.,

2006; Bernstein et al., 2006; Guenther et al., 2007).

The presence of RNA polymerase at the promoters of genes

encoding developmental regulators (Guenther et al., 2007) may

explain why these genes are especially poised for transcription

activation during differentiation (Boyer et al., 2006; Lee et al.,

2006). Polycomb complexes and associated proteins may serve

to pause RNA polymerase machinery at key regulators of devel-

opment in pluripotent cells and in lineages where they are not

expressed. At genes that are activated in a given cell type, PcG

proteins and nucleosomes with H3K27 methylation are lost

(Bernstein et al., 2006; Boyer et al., 2006; Lee et al., 2006; Mikkel-

sen et al., 2007), allowing the transcription apparatus to fully tran-

scribe these genes. The mechanisms that lead to selective acti-

vation of genes encoding specific developmental regulators are

not yet understood, but they almost certainly involve signals

brought to the genome by signal transduction pathways and likely

involve H3K27 demethylation by enzymes such as the JmjC-

domain-containing UTX and JMJD3 proteins (Lan et al., 2007).

Regulatory RNAs in Pluripotency and Early Development

Targeted deletions in mice suggest that microRNAs (miRNAs) are

likely to play key roles in ES cell gene regulation (Kanellopoulou

et al., 2005; Murchison et al., 2005; Wang et al., 2007), but little

is known about how miRNAs function to control the developmen-

tal potential of ES cells. Several lines of evidence indicate that

miRNAs contribute to the control of pluripotency and early devel-

opment. A subset of miRNAs is preferentially expressed in ES

cells or mammalian embryonic tissue (Houbaviy et al., 2003;

Mineno et al., 2006; Suh et al., 2004) Dicer-deficient mice fail to

develop (Bernstein et al., 2003) and ES cells deficient in miRNA

processing enzymes show defects in differentiation, self-re-

newal, and perhaps viability (Kanellopoulou et al., 2005; Murchi-

son et al., 2005; Wang et al., 2007). Specific miRNAs have been

shown to participate in mammalian cellular differentiation as

well as developmental patterning and morphogenesis (Chen
et al., 2004, 2006; Harfe et al., 2005; Hornstein et al., 2005; Kri-

chevsky et al., 2006; Mansfield et al., 2004; Yekta et al., 2004).

However, how transcription factors and miRNAs function to-

gether in the regulatory circuitry that controls pluripotency and

early development is not yet understood.

Signaling and Epigenetic Modifications

during Differentiation

Pluripotent embryonic stem cells can be maintained in an undif-

ferentiated state in culture, but are poised to rapidly differentiate.

Extracellular signals have been identified that contribute to the

maintenance of ES cell pluripotency or that stimulate differentia-

tion down defined lineages. One such signaling molecule is LIF,

which can help maintain murine ES cells in an undifferentiated

state in vitro, although it is not necessary for pluripotency

in vivo (Smith et al., 1988). Other soluble factors, including

Wnt, activin/nodal, and bFGF, have also been shown to contrib-

ute to maintenance of pluripotency, at least under certain culture

conditions (Ogawa et al., 2006). Furthermore, human ES cells—

and the human fibroblasts on which they were plated—have

been reported to send reciprocal paracrine signals of FGF and

IGF, respectively, sufficient to maintain the pluripotency of the

ES cells (Bendall et al., 2007). These findings suggest that vari-

ous signals help to establish a local microenvironment in vitro

and presumably in vivo that helps to maintain pluripotency (see

Essays by J. Rossant and J. Silva and A. Smith, and Review by

C.E. Murry and G. Keller).

Signaling pathways also play key roles in promoting directed

cellular differentiation. For example, activation of the Notch and

BMP4 pathways can promote differentiation of ES cells (Cham-

bers and Smith, 2004; Lowell et al., 2006). The Notch pathway

has been shown to promote neural differentiation in both human

and mouse embryonic stem cells. BMP4, on the other hand, can

under certain conditions prevent neural cell differentiation while

inducing differentiation into other cell types (Chambers and

Smith, 2004).

When cell lineage commitment occurs, Oct4 is rapidly silenced

and the appropriate regulators of development lose Polycomb-

mediated repression and are activated. Oct4 and other regulators

of pluripotency are highly restricted in their expression pattern to

ES cells, cells of the inner cell mass, and to cells of the germ line

(Lengner et al., 2007). Ectopic expression of Oct4 has been

shown to lead to rapid and massive expansion of poorly differen-

tiated cells, especially in the intestine, and rapid fatality, highlight-

ing the strong evolutionary pressure to ensure complete silencing

of pluripotency regulators in somatic cells (Hochedlinger et al.,

2005). Indeed, deletion of the gene in stem cells of adult mice

has no functional consequences (Lengner et al., 2007), consis-

tent with the notion that Oct4 has no role in the self-renewal of so-

matic stem cells or in tissue homeostasis, as has been suggested

in many reports. Retinoic acid, a particularly well-characterized

inducer of differentiation, has been shown to directly contribute

to silencing of the Oct4 locus (Okamoto et al., 1990; Pikarsky

et al., 1994). In addition, a set of nuclear repressors has been

identified that are induced in differentiating cells and are required

for proper silencing of Oct4, including ARP-1, COUP-TF1, and

GCNF (also referred to as Nr6a1) (Ben-Shushan et al., 1995; Fuhr-

mann et al., 2001; Gu et al., 2005, 2006). Histone modifications

associated with gene activity, including H3K4me3 and H3K7
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and H3K9 acetylation, are lost at Oct4. Histone modifications as-

sociated with heterochromatin, H3K9me2 and me3, are gained in

a G9a histone methyltransferase-dependent manner (Feldman

et al., 2006). Finally, in a process dependent on de novo DNA

methyltransferases DNMT3a/3b, which are recruited directly or

indirectly by G9a, the Oct4 promoter undergoes CpG DNA meth-

ylation. Thus Oct4 and other ES cell-specific genes, including

Rex1, but not Nanog or Sox2, undergo a multistep, tightly regu-

lated form of silencing, during which they adopt an epigenetic

state characteristic of heterochromatin (Feldman et al., 2006).

These epigenetic changes appear to enforce a more stable

form of silencing compared to the more labile epigenetic silenc-

ing associated with H3K27 methylation at genes that must be

dynamically regulated during development. As discussed below,

these multilayered marks of epigenetic silencing, including H3K9

methylation and DNA methylation, must be progressively re-

moved in the process of generating iPS cells from somatic cells.

Molecular Mechanisms of Reprogramming
Our initial understanding of the molecular circuitry of the plurip-

otent state provides insight into the mechanisms involved in re-

programming. The loss of most cloned embryos after implanta-

tion has been correlated with the faulty activation of the silent

endogenous pluripotency genes such as Oct4, Nanog, and

Sox2 (Boiani et al., 2002; Bortvin et al., 2003). Similarly, the main-

tenance of the pluripotent state in iPS cells following transcrip-

tion factor transduction has been shown to be dependent on

the activation of the silent endogenous pluripotency genes.

Any molecular understanding of the reprogramming process

needs to explain why the process, initiated by ectopic expres-

sion of Oct4, Sox2, and other factors, is gradual and proceeds

over several weeks and why only a small fraction of the infected

fibroblasts eventually become pluripotent iPS cells. As outlined

in Figure 3B, sequential stochastic events seem to be important

in the process, and this could contribute to the low overall effi-

ciency of generating iPS cells and for the prolonged duration of

the reprogramming process. In addition, genetic differences be-

tween individual infected cells may add significant variability to

the frequency of iPS cells. For example, because iPS cells carry

multiple proviral copies (Wernig et al., 2007), it is possible that

only those rare cells that carry a high copy number of proviral in-

serts and thus express the transcripts at high levels or at appro-

priate relative levels are selected for epigenetic reprogramming.

Alternatively, reprogramming may require the additional activa-

tion of as-yet-unidentified cellular genes by insertional mutagen-

esis similar to oncogene activation in leukemia or mammary car-

cinogenesis. Finally, it is possible that only specific cells such as

the rare somatic stem cells present in the donor cell population

rather than any cell are susceptible to reprogramming.

Furthermore, any mechanistic explanation of reprogramming

has to take into account the following observations. (1) The pro-

cess of reprogramming involves intermediate cell states. For

example, drug-resistant clones can be obtained in cultures of

cells carrying a neomycin gene in the Oct4 or Nanog locus by

3–6 days after infection (Maherali et al., 2007; Okita et al.,

2007; Wernig et al., 2007), whereas the GFP marker carried in

the same genes becomes detectable only weeks after infection

(Brambrink et al., 2008; Meissner et al., 2007) (Figure 6A). This
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discrepancy in timing between the appearance of antibiotic re-

sistance and protein detection could be due to a low level of ini-

tial expression that is sufficient to render the partially reprog-

rammed cells drug resistant, but below the level required to

visualize GFP and maintain pluripotency (Figure 6B). (2) The plu-

ripotent state is dominant in ES-somatic cell hybrids. (3) Multiple

DNA replication cycles and cell divisions are required for in vitro

reprogramming. (4) DNA de novo methylation and hypomethyla-

tion are likely to be important for the process of reprogramming

and maintaining the pluripotent state. (5) The oncogenes c-myc

and Klf4, while not essential for reprogramming, seem to en-

hance the efficiency and speed of the process. (6) PcG proteins

and histone modifications play key roles in the silencing of devel-

opmental regulators in ES cells (Figure 5) and need to be re-

expressed in reprogrammed cells.

The observation that the pluripotent state is dominant in ES-

somatic cell hybrids is consistent with the idea that the ES cell

transcription factors, when present, will generate a pluripotent

state by silencing genes that produce various differentiated

states. Oct4, Nanog, and Sox2 generate the ES cell gene expres-

sion program, at least in part, by binding and silencing genes

encoding developmental regulators, thereby repressing various

differentiated states. These pluripotency regulators likely partic-

ipate, directly or indirectly, in the recruitment of PcG proteins,

which are spread over large portions of these developmental

genes in ES cells, thus preventing their transcription. Indeed,

the PcG-catalyzed H3K27me3 chromatin modifications that

are lacking in MEFs are reestablished in iPS cells (Maherali

et al., 2007; Wernig et al., 2007).

Chromatin changes associated with reprogramming appear to

happen progressively over an extended period of time and do not

occur homogenously in all cells transduced with reprogramming

factors. Multiple DNA replication cycles and cell divisions seem to

be required for in vitro reprogramming, possibly because the

heterochromatin-like silencing that occurs at the Oct4 promoter

must be reversed and the interconnected autoregulatory loop

generated by Oct4, Sox2, and Nanog must be re-established

(Figure 6C). In somatic cells, the Oct4 gene is hypermethylated

and occupied by nucleosomes containing methylated histone

H3K9 (Feldman et al., 2006). Bisulfite sequencing has revealed

that DNA methylation is lost at the promoters of pluripotency reg-

ulators in iPS cells (Maherali et al., 2007; Okita et al., 2007; Wernig

et al., 2007). The methylation status of histone H3K9 has not yet

been examined at these promoters in iPS cells, but it seems likely

that methylation of H3K9 will be lost at these promoters (Loh

et al., 2007) (Figure 6B). Ectopic expression of Oct4 and Sox2

may lead to activation of the endogenous loci when, during

DNA replication, one or more alleles of the Oct4 promoter fails

to be CpG methylated and is assembled into nucleosomes lack-

ing repressive modifications. Similar events may lead to activa-

tion of genes encoding the other endogenous pluripotency

factors, and once levels of endogenous Oct4, Nanog, and Sox2

proteins are appropriate for generating an autoregulatory loop,

the endogenous factors can then maintain the activated state

of their own genes.

While knowledge of the roles of Oct4 and Sox2 in control of ES

cell transcriptional circuitry suggests how these pluripotency

regulators contribute to reprogramming, we have less



Figure 6. Model of Sequential Steps in the Reprogramming of Somatic Cells
(A) Sequential changes of phenotype and activation of Oct4, Nanog and Sox2. Fibroblasts do not express Oct4 or Nanog. After transduction with the four tran-

scription factors Oct4, Sox2, c-myc, and Klf4 the infected fibroblasts assume a transformed phenotype. The endogenous Oct4 or Nanog genes become tran-

scribed at a low level that is sufficient for drug resistance in cells carrying the neo gene in either locus (Maherali et al., 2007; Okita et al., 2007; Wernig et al., 2007)

but not sufficient to produce GFP expression in Oct4-GFP or Nanog-GFP cells. In a stochastic sequence of epigenetic events the endogenous Oct4 and Nanog

genes become fully activated only after 2 to 3 weeks as indicated by the appearance of GFP+ iPS cells in Oct4-GFP or Nanog-GFP fibroblasts (Brambrink et al.,

2008; Meissner et al., 2007) (compare Figure 3B).

(B) Sequential changes of histone and DNA modification. In fibroblasts the promoters of Oct4, Nanog, and Sox2 are methylated (filled lollipops) and histone H3 is

methylated at K9. During the reprogramming process the repressive H3K9me3 histone marks may be gradually replaced by the transcriptionally active H3K4me3

histone marks and the CpG sites become gradually demethylated (open lollipops). This transient epigenetic state may permit an expression level that is sufficient

to give drug resistance (driving the inserted neo gene) but not sufficient to give GFP expression. Additional epigenetic changes alter the histone modification and

the DNA methylation conformation to one that is fully derepressed allowing normal factor expression and resulting in GFP+ iPS cells.

(C) Molecular circuitry during reprogramming. The transduced factors may interact with the endogenous pluripotency genes encoding Oct4, Nanog, and Sox2

and gradually activate the autoregulatory loop that sustains normal factor expression. During the reprogramming process the de novo methyltransferases

Dnmt3a and Dnmt3b become activated and in turn de novo methylate and silence the virally transduced factors. The pluripotent state is now maintained by

the autoregulatory expression of the three transcription factors Oct4, Nanog, and Sox2.
understanding of the functions of Klf4 and c-Myc in reprogram-

ming. One possibility is that these two factors together allow for

a cancer-like transformation of somatic cells, conferring on

MEFs the immortal growth potential and rapid proliferative phe-

notype associated with ES cells (Yamanaka, 2007). A second

model posits that c-Myc modifies the chromatin state of MEFs

to allow the reprogramming factors to more efficiently access

genes necessary for reprogramming (Yamanaka, 2007). When

expressed at high levels, the Myc protein can occupy a large

population of genes and may stimulate chromatin modifications

that may provide increased access for transcription factors (Fer-

nandez et al., 2003; Li et al., 2003). This idea is consistent with

the observation that reprogramming can be accomplished in

the absence of c-Myc or Klf4, albeit at significantly decreased ef-

ficiency (Nakagawa et al., 2008; Wernig et al., 2008; Yu et al.,

2007). A third model emerges from recent evidence that c-Myc

associates with prereplication complexes and promotes DNA

synthesis independent of transcriptional regulation (Domi-
nguez-Sola et al., 2007). DNA replication, promoted by Myc

overexpression, could provide an opportunity for the somatic

genome to reset its epigenetic state in the presence of exoge-

nous reprogramming factors.

Klf4’s function in reprogramming may involve regulation of

specific ES cell genes and may thus be independent of its onco-

gene potential. Oct4 and Sox2 bind to overlapping sites in the

promoter of Lefty1, an ES cell-specific gene, but are not sufficient

to transcriptionally activate the gene in somatic cells (Nakatake

et al., 2006). Addition of Klf4 stimulates transcription of Lefty1

in somatic cells, suggesting that Klf4 may assist Oct4 and Sox2

to initiate expression of key ES cell genes in somatic cells.

As discussed above, reprogramming of somatic cells can be

achieved without c-myc and Klf4 albeit with significantly lower

efficiency (Nakagawa et al., 2008; Wernig et al., 2008; Yu et al.,

2007). This is consistent with the notion that these oncogenes

are nonessential for the reprogramming process and may merely

promote the epigenetic remodeling and activation of essential
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endogenous genes such as Oct4 and Sox2, which then establish

the autoregulatory loop that maintains the pluripotent state

(Figure 6C). Because overexpression of Oct4 can override the

need for Sox2 (Masui et al., 2007), it is possible that Oct4 is

the only transcription factor that is indispensable for reprogram-

ming and that other factors or signaling molecules can serve to

facilitate activation of the ‘‘pluripotency circuitry.’’

Nuclear Cloning Versus In Vitro Reprogramming

Because reprogramming by either nuclear transplantation or in

vitro by overexpression of defined transcription factors results

in pluripotent ES-like cells that are indistinguishable, the question

can be raised of whether similar molecular mechanisms may be

responsible to produce the same epigenetic state. This is unlikely

for the following considerations. (1) It has been well established

that a quiescent state of the donor cells is crucial for SCNT to

be successful (Wilmut et al., 1997) while in vitro reprogramming

seems to depend on active proliferation of the somatic cells. (2)

Reprogramming by SCNT likely occurs in a shorter time span

than in vitro reprogramming. For example, Oct4 is activated at

the 2 to 4 cell stage in cloned embryos (Boiani et al., 2002), and

major chromatin modifications are detected early after nuclear

transfer (Santos et al., 2003) suggesting that the epigenetic state

of the somatic donor genome is reset within a few cell divisions. In

contrast, in vitro reprogramming has been shown to be a pro-

tracted process that proceeds over many weeks (Figure 3A). (3)

Though the molecular mechanisms that initiate SCNT-mediated

reprogramming have not been clarified, it is unlikely that high ex-

pression of oncogenes such as c-myc and Klf4 play a crucial role

as required for efficient in vitro reprogramming.

As discussed above, in vitro culture selects for the fastest-di-

viding cells but not for pluripotency. Thus, the generation of ES,

EG, or MASC or of iPS cells derived from explanted blastocysts,

from primordial or from spermatogonial stem cells or from in vitro

reprogrammed somatic cells, respectively, may be driven by se-

lection for the fastest-dividing cells that outgrow the correspond-

ing slowly proliferating parental cells. It may be that the pluripo-

tent ES-like cells, initiated by as diverse mechanisms as SCNT or

in vitro reprogramming, represent a ‘‘default’’ state of cells grow-

ing in tissue culture. Their seemingly identical pluripotent state

may represent the default epigenetic state assumed by cells

that have been selected for proliferation after exposure to treat-

ments as different as NT, transduction with reprogramming

factors, or explantation into culture.

Outlook
In vitro reprogramming of fibroblasts raises a number of interest-

ing questions. For example, can cells of other lineages such as

endoderm-derived epithelial cells or ectoderm-derived keratino-

cytes be dedifferentiated to a pluripotent state by the same com-

bination of factors as MEFs? Is the efficiency of reprogramming

somatic stem cells higher than that of terminally differentiated

cells as has been seen in nuclear transplantation experiments?

An important aspect of in vitro reprogramming is the induction

of cell proliferation, a fact that will complicate the reprogramming

of postmitotic cells such as neurons. An interesting question is

whether terminally differentiated lymphoid cells that can be

induced to divide can be reprogrammed.
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The translation of in vitro reprogramming to patient-specific

transplantation therapy (Takahashi et al., 2007; Yu et al., 2007)

faces several challenges. Though it appears likely that the re-

quirement for oncogenes such as c-myc and Klf4 can be elimi-

nated (Nakagawa et al., 2008; Wernig et al., 2008; Yu et al.,

2007), transduction of Oct4 raises concerns as it was shown to

be a powerful oncogene when expressed in somatic cells (Ho-

chedlinger et al., 2005). Also, the use of retroviral vectors harbors

the risk of insertional mutations that could activate genes such as

oncogenes that accelerate proliferation. Thus, to overcome

these technical barriers for the eventual application of this ap-

proach in the clinic we need to understand the molecular path-

ways of in vitro reprogramming. This may allow the development

of alternative methods of in vitro reprogramming that do not rely

on the use of potentially harmful agents such as transcription

factors and retroviruses.
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